AHX SERIES

FEATURING ECONOMICAL, HEPTAGONAL DOUBLE SIDED INSERTS WITH 14 CUTTING EDGES

AHX SERIES

MULTI CORNER INSERT FACE MILLING CUTTERS

AHX440S

IDEAL FOR ROUGHING AND FINISHING ON SMALL AND LOW POWER MACHINES

- Diameter range Ø 40 160 mm (3 16 teeth)
- Double sided insert with 14 cutting edges
- Maximum depth of cut 3 mm (APMX)
- With through coolant holes (Ø 40 125 mm)
- Insert corner radius 0.8 mm and 3.2 mm

AHX475S

EFFICIENT HIGH-FEED MILLING AND PROCESS RELIABILITY

- Diameter range Ø 50 160 mm (4 12 teeth)
- Double sided insert with 14 cutting edges
- Maximum depth of cut 1.6 mm (APMX)
- With through coolant holes (Ø 50 160 mm)
- Feed rate up to 2 mm/tooth

AHX640S

IDEAL FOR GENERAL ROUGHING ON MEDIUM AND LARGER MACHINES

- Diameter range Ø 63 200 mm (4 12 teeth)
- Double sided insert with 14 cutting edges
- Maximum depth of cut 6 mm (APMX)
- With through coolant holes (Ø 63 125 mm)

AHX640W

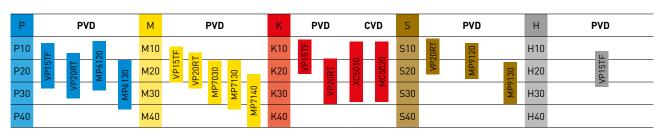
IDEAL FOR GENERAL ROUGHING OF CAST IRON ON MEDIUM AND LARGER MACHINES

- Diameter range Ø 80 315 mm (8 44 teeth)
- Double sided insert with 14 cutting edges
- Maximum depth of cut 6 mm (APMX)
- High rigidity Anti-Fly (AFI) wedge clamping system

DOUBLE SIDED INSERT WITH 14 CUTTING EDGES FOR MACHINING OF STEEL, STAINLESS STEEL AND CAST IRON

ECONOMICAL HEPTAGONAL DOUBLE SIDED INSERT

Double positive cutting edge geometry offers lower cutting resistance for improved machining efficiency.


CUTTING EDGE STABILITY

Thicker inserts ensure greater stability and enable reliable machining.

SIMPLE INDICATION OF THE CUTTING EDGE

For easy handling and to recognize used and unused corners.

GRADES FOR MACHINING A WIDE RANGE OF MATERIALS

MP6120

For general milling of steel

MP6130

For interrupted milling of steel

MP7030

For general milling of stainless steel

MP7130

For general milling of stainless steel

MP7140

For unstable milling of stainless steel

MC5020

For general milling of cast iron

MP9120

For general milling of HRSA and titanium alloy

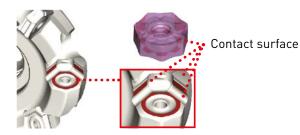
MP9130

For interrupted and general milling of HRSA and Titanium alloy

XC5010

The strength of ceramics allows for stable machining even when cutting at high-speeds

AHX440S/AHX475S/AHX640S


A UNIQUE FACE MILL FOR MACHINING OF STEEL, STAINLESS STEEL AND CAST IRON

DESIGNED TO CONTROL ABNORMAL INSERT BREAKAGE AND BODY DAMAGE

The unique conical insert shim and Anti Fly mechanism (A.F.I) hold the insert securely. The outer edge of the insert is not in contact with the body, thereby preventing damage when sudden fracturing occurs.

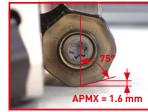
The thick insert negates the need for a shim.

THROUGH COOLANT HOLES

Improves chip discharge and prevents chip welding.

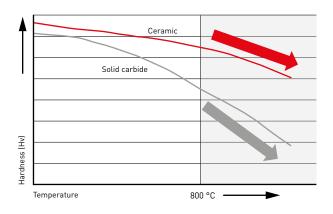
AHX475S

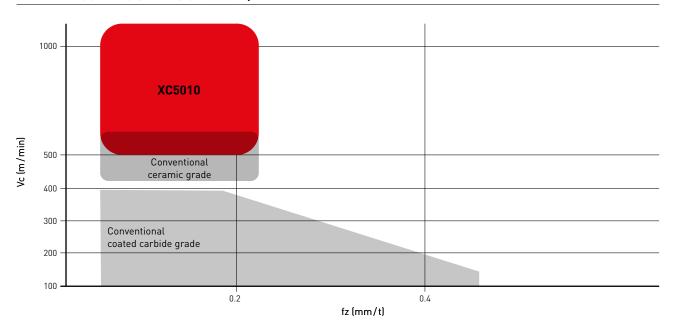
For high feed machining


High feed is possible with AHX475S by setting an RE = 3.2 mm insert to be used in a cutter body with a corner angle of 75° (KAPR 15°).

The maximum depths of cut (APMX) will be limited to 1.6 mm.

AHX440S L Breaker

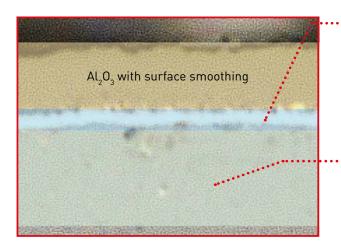

AHX475S


THE STRENGTH OF CERAMICS ALLOWS FOR STABLE MACHINING EVEN WHEN CUTTING AT HIGH-SPEEDS

HIGH TEMPERATURE HARDNESS OF CEMENTED CARBIDE AND CERAMIC

Cemented carbide inserts are significantly reduced in strength when temperatures exceed 800 degrees. However, the strength of ceramic inserts is not affected at these high temperatures, therefore can be used at the high-speeds and depths of cut required to generate sufficient heat to enable machining.

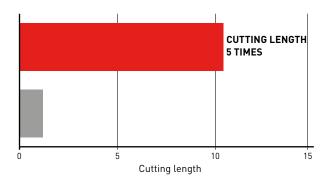
THE COMBINATION OF THE UNIQUE SHAPE AND THE COATED CERAMIC GRADE ACHIEVES STABLE MACHINING EVEN AT A CUTTING SPEEDS OF 1000 M/MIN



THE STRENGTH OF CERAMICS ALLOWS FOR STABLE MACHINING EVEN WHEN CUTTING AT HIGH-SPEEDS

SURFACE-SMOOTHING AL,O, COATING SUPPRESSES THE TRANSMISSION OF CUTTING HEAT

By applying an $\mathrm{Al_2O_3}$ coating, which suppresses the transmission of cutting heat to the ceramic substrate, and together with a surface smoothing treatment, abnormal wear and adhesion of the workpiece material are suppressed.


TECHNOLOGY IMPROVES ADHESION STRENGTH

Mitsubishi Materials' own adhesion technology has greatly improved the adhesion between the ceramic base material and the coating layer.

SILICON NITRIDE CERAMIC SUBSTRATE

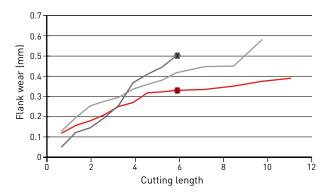
By adopting a high toughness silicon nitride ceramic substrate as the base material, ultra-high-speed milling of ductile cast iron can be achieved even at high temperatures with minimal loss of strength.

Material	DIN GGG60
Tool	AHX640S
DC (mm)	80
Vc (m/min)	1000
fz (mm/t)	0.1
ap (mm)	2.0
ae (mm)	50
Cutting mode	Dry cutting

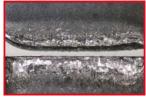
AFTER 1.2 M MACHINING

Non-coated ceramic grade

Machining video at Vc = 1200 m/min



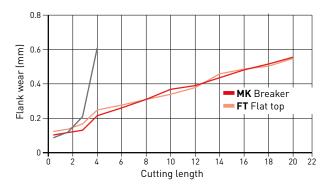
CUTTING PERFORMANCE


COMPARISON OF WEAR WHEN MACHINING GGG70 Vc = 1000 M/MIN

Achieves a level of wear resistance that greatly surpasses carbide grades when high-speed roughing.

Material	DIN GGG70
Tool	AHX640S
DC (mm)	80
Vc (m/min)	1000
fz (mm/t)	0.1
ap (mm)	2.0
ae (mm)	40
Cutting mode	Dry cutting Single insert

AFTER MACHINING 6 M


XC5010

Conventional A

COMPARISON OF FINISHED SURFACES WHEN MACHINING GGG70 AT Vc = 1000 M/MIN

A high quality machined surface is maintained even after a cutting length of 20 m.

Material	DIN GGG70
Tool	AHX640S
DC (mm)	125
Vc (m/min)	1000
fz (mm/t)	0.1
ap (mm)	2.0
ae (mm)	100
Cutting mode	Dry cutting

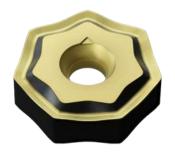
Cutting length 4 m

XC5010

MK Breaker

FT Flat top

MK Breaker


XC5010 FT Flat top

The conventional carbide grade chipped at a cutting length of 4 m.

CHIPBREAKER SYSTEM

MK BREAKER - GENERAL CUTTING

When compared to flat top inserts, the cutting resistance is lower when using the MK breaker. This reduces the load on the spindle thereby making it suitable for high speed cutting.

FT FLAT TOP - CUTTING EDGE STRENGTH

The high cutting edge strength of the flat top type enables stable cutting over long periods and helps to prevent sudden edge chipping.

The height setting when using MK inserts is different than when using FT type inserts.

GGG60 FINISH SURFACE COMPARISON

A high quality machined surface is maintained even when high speed cutting conditions are used.

Material	DIN GGG60
Tool	AHX640S
DC (mm)	63
fz (mm/t)	0.1
ap (mm)	1.0
ae (mm)	32
Cutting mode	Dry cutting

Vc = 1000 m/min

XC5010 MK Breaker

Vc = 250 m/min

Conventional, Coated carbide grade

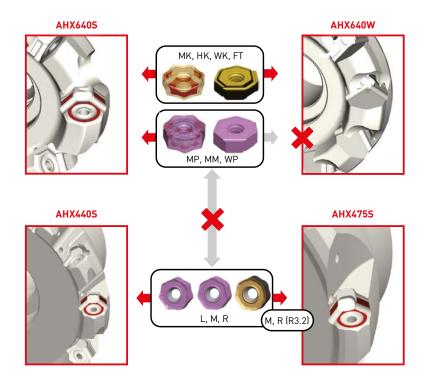
AHX STEEL SERIES

SELECTION REFERENCE TABLE (CUTTING EDGE COUNT AND CUTTING CONDITIONS)

				AHX440S			AHX475S			AHX640S	
DC	Туре	ZEFF	G	eneral cutti	ing	Hig	h feed mach	ining	0	eneral cutt	ing
			Stock	fr	APMX	Stock	fr	APMX	Stock	fr	APMX
40	Fine pitch	3	•	0.6 – 1.2	3						
40	Extra fine pitch	4	•	0.8 – 1.6	3						
	Fine pitch	4	•	0.8 – 1.6	3	•	2.4-4.0	1.6			
50	Extra fine pitch	5	•	1.0 – 2.0	3	•	3.0-5.0	1.6			
	Super extra fine pitch	6	•	1.2 – 2.4	3						
	Coarse pitch	4							•	0.8 – 1.6	6
/ 2	Fine pitch	5	•	1.0 – 2.0	3	•	3.0-5.0	1.6	•	1.0 – 2.0	6
63	Extra fine pitch	6	•	1.2 – 2.4	3	•	3.6-6.0	1.6			
	Super extra fine pitch	8	•	1.6-3.2	3						
	Coarse pitch	4							•	0.8 – 1.6	6
80	Fine pitch	6	•	1.2-2.4	3	•	3.6-6.0	1.6	•	1.2-2.4	6
80	Extra fine pitch	8	•	1.6-3.2	3	•	4.8-8.0	1.6			
	Super extra fine pitch	10	•	2.0-4.0	3						
	Coarse pitch	5							•	1.0 – 2.0	6
	Fine pitch	7	•	1.4 – 2.8	3	•	4.2-7.0	1.6	•	1.4 – 2.8	6
100	Extra fine pitch	9				•	5.4 – 9.0	1.6			
	Extra fine pitch	10	•	2.0 - 4.0	3						
	Super extra fine pitch	12	•	2.4-4.8	3						
	Coarse pitch	6							•	1.2-2.4	6
	Fine pitch	8	•	1.6-3.2	3	•	4.8-8.0	1.6	•	1.6-3.2	6
125	Extra fine pitch	10				•	6.0 – 10.0	1.6			
	Extra fine pitch	12	•	2.4-4.8	3						
	Super extra fine pitch	14	•	2.8 – 5.6	3						
	Coarse pitch	7							•	1.4 – 2.8	6
	Fine pitch	10	•	2.0-4.0	3	•	6.0 – 10.0	1.6	•	2.0 - 4.0	6
160	Extra fine pitch	12				•	7.2 – 12.0	1.6			
	Extra fine pitch	14	•	2.8 – 5.6	3						
	Super extra fine pitch	16	•	3.2-6.4	3					<u>- </u>	
200	Coarse pitch	8							•	1.6-3.2	6
200	Fine pitch	12							•	2.4 - 4.8	6

^{1.} fr: Feed rate per revolution (AHX475S: the feed rate per cutter (fz) will be limited by the cutting width ae. Please refer to page 21 for details.)

^{2.} APMX: Maximum depths of cut (AHX440S: the maximum depths of cut will vary depending on the type of chipbreaker.)


^{3.} The depths of cut and feed rate are identical to the recommended conditions for carbon steel and alloy steel.

AHX STEEL SERIES

SELECTION REFERENCE TABLE (CUTTING EDGE COUNT AND CUTTING CONDITIONS)

COMPATIBILITY WITH INSERTS FOR AHX SERIES

The RE = 3.2 mm insert for use with AHX440S can be mounted on AHX475S type cutters. All inserts for use with AHX640 can be mounted on AHX640S (note, however, that the height setting will differ). The inserts for mounting on AHX640W are the MK, HK, WK and FT breaker types for casting.

AHX STEEL SERIES

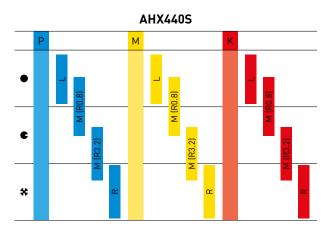
CHIPBREAKER SYSTEM

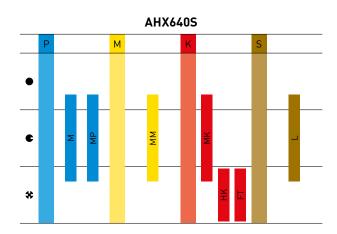
L Breaker

- Focus on cutting edge sharpness
- Low resistance type

M Breaker

- First Recommendation
- General use





R Breaker

- Focus on fracture resistance
- · Reinforced edge type

Cutting conditions:

WIPER INSERT OF AHX640S

Based on the number of inserts and the cutting conditions, use of wiper inserts can improve overall surface finishes.

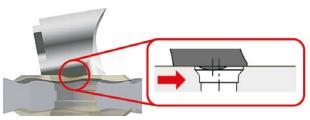
WP + combination with MP Right-hand 2 corners, left-hand 2 corners.

WK + combination with MK Right-hand 2 corners, left-hand 2 corners.

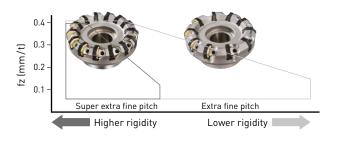
AHX640W

FACE MILLING CUTTER FOR HIGH EFFICIENCY MACHINING OF CAST IRON

HIGH RIGIDITY INSERTS SUITABLE FOR HIGH FEED MACHINING

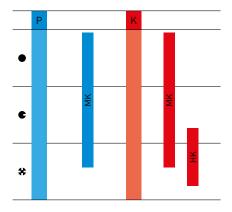

Sloped cutting edge and large rake angle

INNOVATIVE CLAMP SYSTEM


New type of wedge developed to increase the permissible number of teeth. Unique geometry uses a protruding section that fits inside the insert hole and acts as an Anti-Fly Insert (AFI) mechanism.

2 VARIATIONS FOR DIFFERENT APPLICATIONS

Extra fine pitch and super extra fine pitch types allow high efficiency milling under various machining conditions. Additionally, left hand types for use on special machines are also available as standard. Inserts can be used with both right and left hand type cutters.


Prevents insert from flying out of the pocket.

AHX640W

FACE MILLING CUTTER FOR HIGH EFFICIENCY MACHINING OF CAST IRON

INSERT APPLICATIONS



MK General purpose insert

- Accurate tolerance M-class insert.
- Neutral, double sided 14 corners.
- 20° rake angle for low cutting resistance. First recommendation for roughing and finishing.

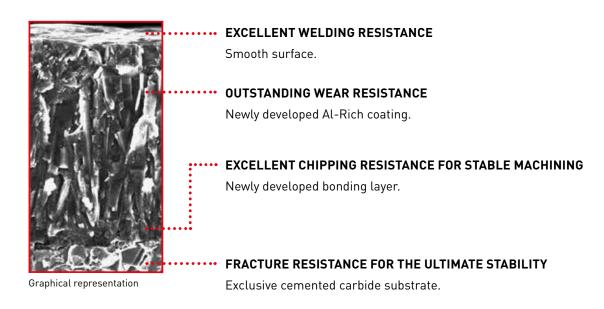
HK Strong cutting edge insert

- Accurate tolerance M-class insert.
- Neutral, double sided 14 corners.
- High cutting edge strength to prevent fracturing of the cutting edge during unstable machining of non-uniform workpieces and high feed machining.

WK Wiper Insert

- Right-hand 2 corners, left-hand 2 corners.
- · Based on the number of inserts and the cutting conditions, by using the wiper inserts it is possible to improve the overall surface finish.
- 1. The insert for AHX640W is compatible with AHX640S.
- 2. Please refer to page 8 for the proper use of the XC5010 insert.

MV1000 SERIES

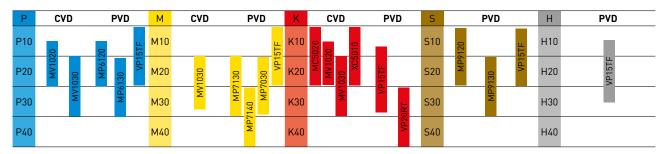

COATED CARBIDE GRADE FOR MILLING

ADVANCED WEAR RESISTANCE

By adopting the newly developed Al-Rich coating technology, the (Al,Ti)N with a high Al content ratio displays very high hardness. This greatly improves oxidation and wear resistance.

ADVANCED THERMAL SHOCK RESISTANCE

The extreme heat resistance of this new series achieves amazing stability, not only during dry cutting, but also when wet cutting where inserts are usually prone to thermal cracking.



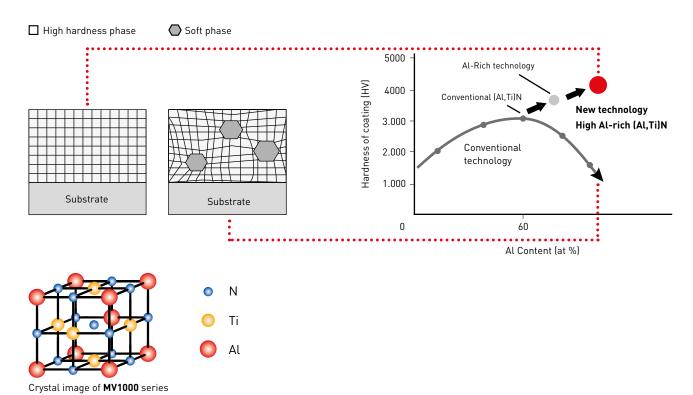
MV1020

This grade has advanced wear and thermal shock resistance and also achieves stable cutting at unprecedented cutting speeds, especially when machining steel and ductile cast iron, thus greatly reducing work time.

MV1030

The new Al-Rich coating also provides excellent wear resistance. An unprecedented performance against sudden breakage was also realised especially during problematic wet cutting and when machining stainless steels.

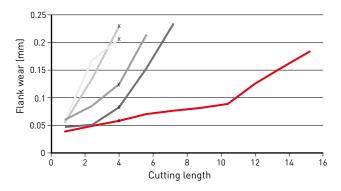
^{1.} Dry cutting is recommended for machining stainless steel with MV1030.



MV1020/MV1030

NEWLY DEVELOPED AI-RICH COATING

ADVANCED WEAR AND THERMAL SHOCK RESISTANT

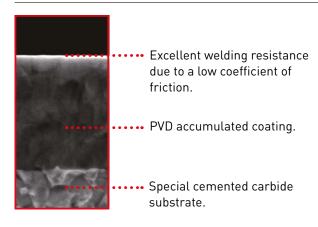

By adopting the newly developed Al-Rich coating technology, the (Al,Ti)N with a high Al content ratio displays a very high hardness. This greatly improves oxidation and wear resistance. The extreme heat resistance of this new series achieves amazing stability not only when dry cutting, but also during wet cutting where inserts are usually prone to thermal cracking. MV1020 offers overwhelmingly superior performance in high-speed cutting, and MV1030 achieves stable performance during interrupted and stainless steel machining.

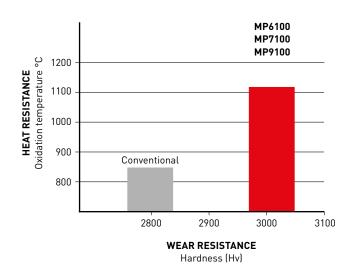
CUTTING PERFORMANCE

COMPARISON OF WEAR RESISTANCE WHEN MACHINING DUCTILE CAST IRON

Material	DIN GGG70
Tool	AHX440
Insert	NNMU130508ZEN-M
Vc (m/min)	300
fz (mm/t)	0.1
ap (mm)	2.0
ae (mm)	52
Cutting mode	Dry cutting Single insert

TAKEN AFTER CUTTING LENGTH OF 4.0 M

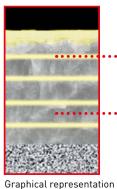

Conventional C


Conventional D

MP6100/MP7100/MP9100

INSERT GRADES FOR A WIDE RANGE OF MATERIALS

ACCUMULATED AI-TI-Cr-N BASED PVD COATING



COEFFICIENT OF FRICTION

Material	Grade –	Coefficient of friction (Measured at 600 °C)					
Material	Grade –	C55	X10CrNi18-9	Ti6AI4V			
Carbon steel, Alloy steel	MP6100	0.4					
Stainless steel	MP7100		0.5				
Titanium alloy, Heat resistant alloy	MP9100		0.7	0.3			
Conventional		0.7		0.7			

TOUGH-Σ

Each grade has a layer suitable for each application area

Base Layer High Al-(Al, Ti)N

The new technology Al-(Al, Ti)N coating provides stabilisation of the high hardness phase and succeeds in dramatically improving wear, crater and welding resistance.

Р	PVD	М	PVD	K	CVD	PVD	S	PVD	Н	PVD
P10	5120 5TF	M10	5TF	K10	5020		S10	120 5TF	H10	11
P20	130 VP1	M20	7130 7030 VP1	K20	MCE XC5		S20	130 VP1	H20	P15TF
P30	MPA	M30	MP7	K30	, , , , , , , , , , , , , , , , , , ,	ORT	S30	МР9	H30	>
P40		M40	MP7	K40		VP2	S40		H40	

MC5020

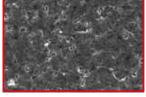
MC5020 has excellent wear, chipping and thermal crack resistance. These features prevent the problems usually associated with machining cast iron over prolonged periods.

Structure of MC5020

IMPROVED WEAR RESISTANCE

The micro-grain wear resistant Al₂O₃ and fibrous TiCN layers deliver excellent wear resistance when milling a wide range of cast irons.

IMPROVED FRACTURE RESISTANCE


Use of a specially developed cemented carbide that provides superior resistance to fracture and thermal cracking prevents the cutting edge from sudden fracturing.

REDUCED ABNORMAL DAMAGE

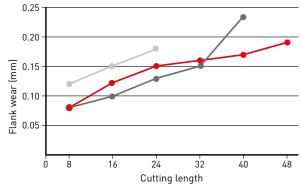
A black super smooth coating prevents abnormal damage such as weld chipping.

BLACK SUPER SMOOTH COATING

COMPARISON OF COATING SURFACE

Conventional

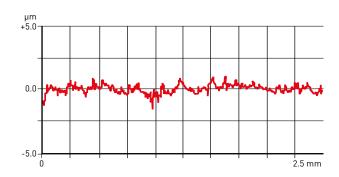
CUTTING PERFORMANCE


SURFACE FINISH

Surface finish condition

CUTTING PERFORMANCE

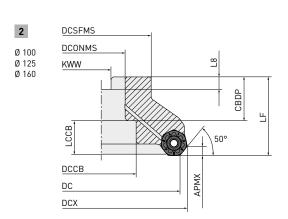
WEAR RESISTANCE

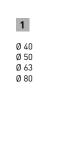

Material	DIN GG30
Tool	AHX640WR10010D
Insert	NNMU200608ZEN-MK
Vc (m/min)	300
fz (mm/t)	0.3
ap (mm)	5.0
ae (mm)	100
Cutting mode	Dry cutting Single insert

Wear comparison when machining with a single tooth.

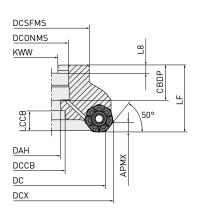
SURFACE FINISH

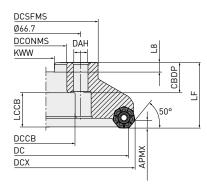
Material	DIN GGG70
Tool	AHX640WR10014D
Insert	NNMU200608ZEN-MK
Wiper insert	WNEU2006ZEN7C-WK
Vc (m/min)	350
fz (mm/t)	0.1
ap (mm)	0.4
ae (mm)	80
Cutting mode	Air blow





FACE MILL





3

Ø 160

Right hand tool holder only.

	Set bolt ord			
Tool holder type		X	-	Geometry
AHX440S-040ACCAR	HSC08025H	HSC08040		1
AHX440S-050AOOAR	HSC10030H	HSC10035		
AHX440S-063AOOAR	HSC10030H	HSC10035	1	
AHX440S-080ACCAR	HSC12035H :	HSC12035		
ΑΠΛ4405-000A(\/\)AR	H2C12030H	HSC12045		-
AHX440S-100BOOAR	MBA16033H	_	- 2	2
AHX440S-125BOOAR	MBA20040H	_		
	-			

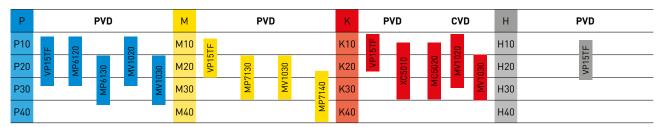
AHX440S - FACE MILL

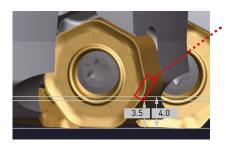
ARBOR TYPE

Order number	Stock	АРМХ	DC	DCONMS	LF	WT	ZEFF		Туре
AHX440S-040A03AR	•	3	40	16	40	0.3	3	0	1
AHX440S-040A04AR	•	3	40	16	40	0.2	4	0	1
AHX440S-050A04AR	•	3	50	22	40	0.4	4	0	1
AHX440S-050A05AR	•	3	50	22	40	0.4	5	0	1
AHX440S-050A06AR	•	3	50	22	40	0.4	6	0	1
AHX440S-063A05AR	•	3	63	22	40	0.6	5	0	1
AHX440S-063A06AR	•	3	63	22	40	0.6	6	0	1
AHX440S-063A08AR	•	3	63	22	40	0.5	8	0	1
AHX440S-080A06AR	•	3	80	27	50	1.1	6	0	1
AHX440S-080A08AR	•	3	80	27	50	1.1	8	0	1
AHX440S-080A10AR	•	3	80	27	50	1.1	10	0	1
AHX440S-100B07AR	•	3	100	32	50	1.6	7	0	2
AHX440S-100B10AR	•	3	100	32	50	1.6	10	0	2
AHX440S-100B12AR	•	3	100	32	50	1.6	12	0	2
AHX440S-125B08AR	•	3	125	40	63	3.0	8	0	2
AHX440S-125B12AR	•	3	125	40	63	3.0	12	0	2
AHX440S-125B14AR	•	3	125	40	63	2.9	14	0	2
AHX440S-160C10NR	•	3	160	40	63	4.8	10	_	3
AHX440S-160C14NR	•	3	160	40	63	4.6	14	_	3
AHX440S-160C16NR	•	3	160	40	63	4.7	16	_	3

1. The cutter body is not supplied with the set bolt for the arbor. Please order a set bolt seperately. \bigcirc = With through coolant holes

MOUNTING DIMENSIONS

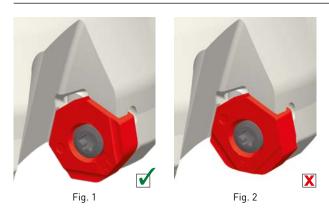

Order number	CBDP	DAH	DCCB	DCONMS	DCSFMS	DCX	KWW	L8	Туре
AHX440S-040A03AR	18	9	_	16	37	48.4	8.4	5.6	1
AHX440S-040A04AR	18	9	_	16	37	48.4	8.4	5.6	1
AHX440S-050A04AR	20	11	_	22	47	58.4	10.4	6.3	1
AHX440S-050A05AR	20	11	_	22	47	58.4	10.4	6.3	1
AHX440S-050A06AR	20	11	_	22	47	58.4	10.4	6.3	1
AHX440S-063A05AR	20	11	_	22	50	71.4	10.4	6.3	1
AHX440S-063A06AR	20	11	_	22	50	71.4	10.4	6.3	1
AHX440S-063A08AR	20	11	_	22	50	71.4	10.4	6.3	1
AHX440S-080A06AR	23	13	_	27	56	88.4	12.4	7	1
AHX440S-080A08AR	23	13	_	27	56	88.4	12.4	7	1
AHX440S-080A10AR	23	13	_	27	56	88.4	12.4	7	1
AHX440S-100B07AR	32	_	45	32	78	108.4	14.4	8	2
AHX440S-100B10AR	32	_	45	32	78	108.4	14.4	8	2
AHX440S-100B12AR	32	_	45	32	78	108.3	14.4	8	2
AHX440S-125B08AR	40	_	56	40	89	133.4	16.4	9	2
AHX440S-125B12AR	40	_	56	40	89	133.4	16.4	9	2
AHX440S-125B14AR	40	_	56	40	89	133.3	16.4	9	2
AHX440S-160C10NR	40	_	56	40	100	168.4	16.4	9	3
AHX440S-160C14NR	40	_	56	40	100	168.4	16.4	9	3
AHX440S-160C16NR	40	_	56	40	100	168.4	16.4	9	3


AHX440S - INSERTS

)	Steel			C	*				•	•	C	Cutt	ing con	ditions	:				
1	Stainless steel						*				C	● : S	table cı	utting	€ : Gen	neral cutt	ing \$: Unstable	cutting	
(Cast iron							C	€	C	•	Honi	ina:						
ı	Hardened steel										c	E: R	-						
	Order number	Class	Honing	MP6120	P61	MP7130	MP7140	MC5020	MV1020	MV1030	VP15TF	IC	S	BS	RE	АРМХ	G	eometry	
	NNMU130508ZER-L	М	Е	•	•	•	•	•	•	•	•	13.4	5.09	1	0.8	3			
	NNMU130508ZEN-M	М	Е	•	•	•	•	•	•	•	•	13.4	5.09	1	0.8	4*			h
	NNMU130532ZEN-M	М	Е	•	•	•	•	•	•	•	•	13.4	5.09	_	3.2	4*			٣
	NNMU130532ZEN-R	М	Ε	•	•	•	•	•	•	•	•	13.4	5.09	_	3.2	4*		BS RE	,
	WNEU1305ZEN4C-M	Е	E	•				•			•	13.4	5.09	4	2.7	0.5			
																	0	BS RE	

^{*} Without using the wiper, APMX = 3.0 mm

GRADE SELECTION



NEXT CORNER RADIUS TO BE USED

When the next corner is not to be used, the APMX is 4.0 mm. When the next corner is to be used later (clockwise insert indexing), the APMX is 3.5 mm. This is to ensure that the next cutting edge isn't already worn from use at 4.0 mm depth of cut.

INSTRUCTIONS FOR USE OF WIPER INSERTS

- 1. These wiper inserts have 2 cutting edges for left hand use and 2 corners for right hand use. Position as shown in figure 1.
- 2. A satisfactory finished surface can be achieved with one wiper insert. However, if the feed rate per revolution will be equal to or greater than the width of the wiper edge, it is recommended to install the second and further wiper inserts spaced evenly within the cutting body.

RECOMMENDED CUTTING CONDITIONS

DRY CUTTING

Material	Properties	Grade	Vc	fz	ар	ae
		MV1020	300 (200–400)	0.30 (0.20-0.40)	≤ 3	<0.8DC
		MP6120	250 (200–300)	0.30 (0.20-0.40)	≼3	<0.8DC
Mild steel	<180HB	VP15TF	250 (200–300)	0.30 (0.20-0.40)	≼3	<0.8DC
		MV1030	245 (190–300)	0.30 (0.20-0.40)	≼3	<0.8DC
		MP6130	240 (190–290)	0.30 (0.20-0.40)	≼3	<0.8DC
		MV1020	260 (170–350)	0.30 (0.20-0.40)	≼3	≤0.8DC
		MP6120	220 (170–270)	0.30 (0.20-0.40)	≼3	≤0.8DC
	180-280HB	VP15TF	220 (170–270)	0.30 (0.20-0.40)	≼3	≤0.8DC
		MV1030	210 (150–270)	0.30 (0.20-0.40)	≼3	≤0.8DC
Carbon steel		MP6130	200 (150–250)	0.30 (0.20-0.40)	≼3	<0.8DC
Alloy steel		MV1020	180 (100–250)	0.30 (0.20-0.40)	≼3	<0.8DC
		MP6120	140 (100–180)	0.30 (0.20-0.40)	≼3	<0.8DC
	280-350HB	VP15TF	140 (100–180)	0.30 (0.20-0.40)	≼3	<0.8DC
		MV1030	135 (90–180)	0.30 (0.20-0.40)	≤ 3	<0.8DC
		MP6130	120 (90–150)	0.30 (0.20-0.40)	≼3	<0.8DC
		MP6120	140 (100–180)	0.15 (0.20-0.20)	≤ 1	<0.8DC
Alloy tool steel	≼350HB	VP15TF	140 (100–180)	0.15 (0.20-0.20)	≤ 1	≤0.8DC
		MP6130	120 (90–150)	0.15 (0.20-0.20)	≤ 1	≤0.8DC
		MP6120	140 (100–180)	0.15 (0.20-0.20)	≤ 1	≤0.8DC
Pre-hardened steel	35-45HRC	MP6130	120 (90–150)	0.15 (0.20-0.20)	≤ 1	<0.8DC
		MP7130	200 (150–250)	0.20 (0.10-0.30)	≤ 3	≤0.8DC
	000115	VP15TF	200 (150–250)	0.20 (0.10-0.30)	≤ 3	<0.8DC
	≤200HB	MV1030	185 (120–250)	0.20 (0.10-0.30)	≤ 3	<0.8DC
		MP7140	180 (120–230)	0.20 (0.10-0.30)	≤ 3	<0.8DC
Austenitic stainless steel		MP7130	150 (100–200)	0.20 (0.10-0.30)	≼3	<0.8DC
		VP15TF	150 (100–200)	0.20 (0.10-0.30)	≤ 3	<0.8DC
	≥200HB	MV1030	140 (80–200)	0.20 (0.10-0.30)	≤ 3	≤0.8DC
		MP7140	130 (80–180)	0.20 (0.10-0.30)	≤ 3	<0.8DC
		MP7130	200 (150–250)	0.20 (0.10-0.30)	≤ 3	≤0.8DC
		VP15TF	200 (150–250)	0.20 (0.10-0.30)	≤ 3	<0.8DC
	≤200HB	MV1030	185 (120–250)	0.20 (0.10-0.30)	≤ 3	≤0.8DC
M Ferritic and martensitic		MP7140	180 (120–230)	0.20 (0.10-0.30)	≼3	<0.8DC
stainless steel		MP7130	150 (100–200)	0.20 (0.10-0.30)	≤ 3	≤0.8DC
		VP15TF	150 (100–200)	0.20 (0.10-0.30)	≼3	<0.8DC
	≥200HB	MV1030	140 (80–200)	0.20 (0.10-0.30)	≼ 3	<0.8DC
		MP7140	130 (80–180)	0.20 (0.10-0.30)	≼3	<0.8DC
		MP7130	140 (100–180)	0.15 (0.20-0.20)	≼3	<0.8DC
Two-phase stainless steel	≤280HB	VP15TF	140 (100–180)	0.15 (0.20-0.20)	≼3	<0.8DC
		MP7140	120 (80–160)	0.15 (0.20-0.20)	≼3	<0.8DC
		MP7130	130 (100–160)	0.15 (0.20–0.20)	≼3	<0.8DC
Hardened stainless steel	≤450HB	VP15TF	130 (100–160)	0.15 (0.20-0.20)	≼3	<0.8DC
		MP7140	110 (80–140)	0.15 (0.20–0.20)	≼3	<0.8DC
						1/2

^{1.} Reduce the cutting speed when using coolant.

RECOMMENDED CUTTING CONDITIONS

DRY CUTTING

Properties	Grade	Vc	fz	ар	ae
050110	MC5020	220 (150–300)	0.30 (0.20-0.40)	≤ 3	<0.8DC
<35UMPa	VP15TF	180 (130–230)	0.30 (0.20-0.40)	≼3	≤0.8DC
	MV1020	240 (130–350)	0.20 (0.10-0.30)	≼3	≤0.8DC
(50MB	MC5020	220 (150–300)	0.20 (0.10-0.30)	≼3	≤0.8DC
<45UMPa	MV1030	185 (120–250)	0.20 (0.10-0.30)	≼3	<0.8DC
	VP15TF	170 (120–220)	0.20 (0.10-0.30)	≼3	≤0.8DC
	MV1020	220 (80-350)	0.20 (0.10-0.30)	≼3	<0.8DC
00014D	MC5020	170 (150–200)	0.20 (0.10-0.30)	≼3	<0.8DC
<800MPa	MV1030	150 (100–200)	0.20 (0.10-0.30)	≼3	≤0.8DC
	VP15TF	140 (100–180)	0.20 (0.10-0.30)	≼3	≤0.8DC
40-55HRC	VP15TF	80 (60–100)	0.15 (0.10-0.20)	≤ 1	≤0.8DC
	<350MPa <450MPa <800MPa	<350MPa MC5020 VP15TF MV1020 MC5020 MV1030 VP15TF MV1020 MV1020 MV1020 MC5020 MV1020 MC5020 MV1030 VP15TF		MC5020 220 (150-300) 0.30 (0.20-0.40) VP15TF 180 (130-230) 0.30 (0.20-0.40) MV1020 240 (130-350) 0.20 (0.10-0.30) MC5020 220 (150-300) 0.20 (0.10-0.30) MV1030 185 (120-250) 0.20 (0.10-0.30) VP15TF 170 (120-220) 0.20 (0.10-0.30) MV1020 220 (80-350) 0.20 (0.10-0.30) MC5020 170 (150-200) 0.20 (0.10-0.30) MV1030 150 (100-200) 0.20 (0.10-0.30) VP15TF 140 (100-180) 0.20 (0.10-0.30)	MC5020 220 (150-300) 0.30 (0.20-0.40) <3 VP15TF 180 (130-230) 0.30 (0.20-0.40) <3

^{1.} Reduce the cutting speed when using coolant.

RECOMMENDED CUTTING CONDITIONS

WET CUTTING

	Material	Properties	Grade	Vc	fz	ар	ae
			MP7130	125 (100–150)	0.15 (0.10-0.20)	≼ 3	<0.8DC
		≤200HB	VP15TF	125 (100–150)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
	Austenitic stainless steel		MP7140	100 (80–140)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
	Austenitic Stainless Steet		MP7130	100 (75–125)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
		≥200HB	VP15TF	100 (75–125)	0.15 (0.10-0.20)	≼ 3	≤0.8DC
			MP7140	80 (55–105)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
			MP7130	125 (100–150)	0.15 (0.10-0.20)	≼ 3	≤0.8DC
		≤200HB	VP15TF	125 (100–150)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
	Ferritic and martensitic		MP7140	100 (80–140)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
IVI	stainless steel		MP7130	100 (75–125)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
		≽200HB	VP15TF	100 (75–125)	0.15 (0.10-0.20)	≤ 3	≤0.8DC
			MP7140	80 (55–105)	0.15 (0.10-0.20)	≼3	≤0.8DC
			MP7130	80 (60–100)	0.10 (0.05-0.15)	≤ 3	≤0.8DC
	Two-phase stainless steel	≤280HB	VP15TF	80 (60–100)	0.10 (0.05-0.15)	≤ 3	≤0.8DC
			MP7140	60 (40- 80)	0.10 (0.05-0.15)	≤ 3	≤0.8DC
			MP7130	70 (50- 90)	0.10 (0.05-0.15)	≼3	≤0.8DC
	Hardened stainless steel	≤450HB	VP15TF	70 (50- 90)	0.10 (0.05-0.15)	≤ 3	≤0.8DC
			MP7140	50 (30- 70)	0.10 (0.05-0.15)	≼3	<0.8DC

23

RECOMMENDED CUTTING CONDITIONS

CUTTING CONDITIONS FOR WIPER INSERT

Material	Properties	Grade	Vc	fz	ар
Mild steel	<180HB	MP6120	250 (200–300)	0.30 (0.20-0.40)	≤0.5
Mitu Steet	<100HB	VP15TF	250 (200–300)	0.30 (0.20-0.40)	≤0.5
	180-280HB	MP6120	220 (170–270)	0.30 (0.20-0.40)	<0.5
Carbon steel	160-260HB	VP15TF	220 (170-270)	0.30 (0.20-0.40)	≤0.5
Alloy steel	280-350HB	MP6120	140 (100–180)	0.30 (0.20-0.40)	≤0.5
	200-33000	VP15TF	140 (100–180)	0.30 (0.20-0.40)	≤0.5
Alloy tool steel	≼350HB	MP6120	140 (100–180)	0.15 (0.10-0.20)	≤ 0.5
Alloy tool steet	₹330HB	VP15TF	140 (100–180)	0.15 (0.10-0.20)	≤0.5
Des bendered steel	2E /EUDO	MP6120	140 (100–180)	0.15 (0.10-0.20)	≤0.5
Pre-hardened steel	35-45HRC	VP15TF	140 (100–180)	0.15 (0.10-0.20)	≤ 0.5
A	≤200HB	VP15TF	125 (100–150)	0.15 (0.10-0.20)	≤0.5
Austenitic stainless steel	≥200HB	VP15TF	100 (75–125)	0.15 (0.10-0.20)	<0.5
Ferritic and martensitic stainless steel	≤200HB	VP15TF	125 (100–150)	0.15 (0.10-0.20)	≤0.5
Ferritic and martensitic stainless steel	≥200HB	VP15TF	100 (75–125)	0.15 (0.10-0.20)	≤0.5
Two-phase stainless steel	≤280HB	VP15TF	80 (60–100)	0.10 (0.05-0.15)	<0.5
Hardened stainless steel	≤450HB	VP15TF	70 (50- 90)	0.10 (0.05-0.15)	<0.5
C	OFOMB	MC5020	320 (250–400)	0.30 (0.20-0.40)	≤ 0.5
Grey cast iron	<350MPa	VP15TF	220 (150–300)	0.30 (0.20-0.40)	<0.5
	/FOMD	MC5020	250(200-300)	0.20 (0.10-0.30)	<0.5
Durable and inco	<450MPa	VP15TF	200 (150–250)	0.20 (0.10-0.30)	<0.5
Ductile cast iron	00014D	MC5020	220 (200–250)	0.20 (0.10-0.30)	<0.5
	<800MPa	VP15TF	170 (150–200)	0.20 (0.10-0.30)	<0.5
Hardened steel	40-55HRC	VP15TF	80 (60–100)	0.15 (0.10-0.20)	<0.5

1. Refer to the table above and set up cutting conditions according to cutting applications.

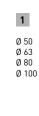
2. When placing emphasis on surface finish quality, wet cutting is recommended. (Tool life is lowered when compared to dry cutting)

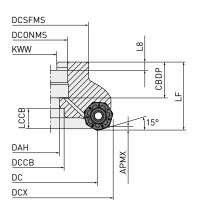
3. The recommended depth of cut differs according to insert geometry.

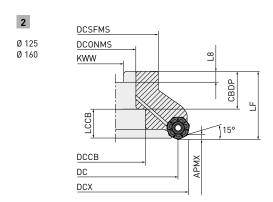
4. When clamp rigidity is low and tool overhang is long, we recommended to reduce the cutting speed and the feed rate by 30 %.

Wet cutting is recommended when good surface finishes are needed on stainless steel. (Tool life is short wehn compared to dry cutting).

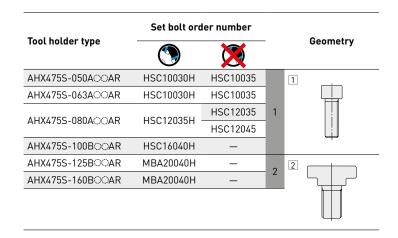
AHX475S







HIGH FEED MILLING CUTTER



Right hand tool holder only.



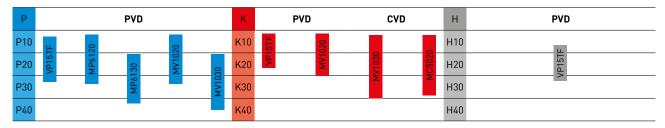
AHX475S - HIGH FEED MILLING CUTTER

ARBOR TYPE

Order number	Stock	АРМХ	DC	DCONMS	LF	WT	ZEFF		Туре
AHX475S-050A04AR	•	1.6	50	22	50	0.6	4	0	1
AHX475S-050A05AR	•	1.6	50	22	50	0.6	5	0	1
AHX475S-063A05AR	•	1.6	63	22	50	1.0	5	0	1
AHX475S-063A06AR	•	1.6	63	22	50	0.9	6	0	1
AHX475S-080A06AR	•	1.6	80	27	50	1.6	6	0	1
AHX475S-080A08AR	•	1.6	80	27	50	1.5	8	0	1
AHX475S-100A07AR	•	1.6	100	32	63	3.2	7	0	2
AHX475S-100A09AR	•	1.6	100	32	63	3.2	9	0	2
AHX475S-125B08AR	•	1.6	125	40	63	3.8	8	0	2
AHX475S-125B10AR	•	1.6	125	40	63	3.8	10	0	2
AHX475S-160B10AR	•	1.6	160	40	63	5.4	10	0	2
AHX475S-160B12AR	•	1.6	160	40	63	5.3	12	0	2

1. The cutter body is not supplied with the set bolt for the arbor. Please order a set bolt seperately. \bigcirc = With through coolant holes

MOUNTING DIMENSIONS


Order number	CBDP	DAH	DCCB	DCONMS	DCSFMS	DCX	KWW	L8	Туре
AHX475S-050A04AR	20	11	17	22	47	65.6	10.4	6.3	1
AHX475S-050A05AR	20	11	17	22	47	65.6	10.4	6.3	1
AHX475S-063A05AR	20	11	17	22	60	78.6	10.4	6.3	1
AHX475S-063A06AR	20	11	17	22	60	78.6	10.4	6.3	1
AHX475S-080A06AR	23	13	20	27	76	95.6	12.4	7	1
AHX475S-080A08AR	23	13	20	27	76	95.6	12.4	7	1
AHX475S-100A07AR	26	17	26	32	96	115.6	14.4	8	2
AHX475S-100A09AR	26	17	26	32	96	115.6	14.4	8	2
AHX475S-125B08AR	40	56	_	40	100	140.6	16.4	9	2
AHX475S-125B10AR	40	56	_	40	100	140.6	16.4	9	2
AHX475S-160B10AR	40	56	_	40	100	175.6	16.4	9	2
AHX475S-160B12AR	40	56		40	100	175.6	16.4	9	2

26

AHX475S - INSERTS

Steel			C	*		C	C	C		ng cond				
Cast iron					C	€	C	C	●: St	able cu	tting	€ : Gen	eral cuttii	ng \$: Unstable cutting
Hardened steel								C	Honi	ng: E: R	lound			
Order number	Class	Honing	MP6120	MP6130	MC5020	MV1020	MV1030	VP15TF	IC	S	BS	RE	АРМХ	Geometry
NNMU130532ZEN-M	М	Е	•	•	•	•	•	•	13.4	5.09	_	3.2	1.6	
NNMU130532ZEN-R	М	Е	•	•	•	•	•	•	13.4	5.09	_	3.2	1.6	
														BS RE

GRADE SELECTION

AHX475S

RECOMMENDED CUTTING CONDITIONS

DRY CUTTING

Material	Properties	Grade		Vc	fz	ар	ae
		MV1020	R	220 (170 – 270)	0.6	≤1.6	<0.5DC
		MV1020	R	220 (170 – 270)	0.8	≤1.6	0.5 - 0.8D0
		MV1020	М	220 (170 – 270)	1.0	≤1.6	0.8 – 1DC
		MP6120	R	150 (100 – 200)	0.6	≤1.6	<0.5DC
		MP6120	R	150 (100 – 200)	0.8	≤1.6	0.5 – 0.8D0
Mild steel	<180HB	MP6120	М	150 (100 – 200)	1.0	≤1.6	0.8 – 1DC
Mild Steet	100115	MV1030	R	140 (80 – 200)	0.6	≤1.6	<0.5DC
		MV1030	R	140 (80 – 200)	8.0	≤1.6	0.5 – 0.8D
		MV1030	М	140 (80 – 200)	1.0	≤1.6	0.8 – 1DC
		MP6130	R	130 (80 – 180)	0.6	≤1.6	<0.5DC
		MP6130	R	130 (80 – 180)	0.8	≤1.6	0.5 – 0.8D
		MP6130	М	130 (80 – 180)	1	≤1.6	0.8 – 1DC
		MV1020	R	200 (150 – 250)	0.6	≤1.6	<0.5DC
		MV1020	R	200 (150 – 250)	0.8	≤1.6	0.5 – 0.8D
		MV1020	М	200 (150 – 250)	1.0	≤1.6	0.8 – 1DC
		MP6120	R	130 (80 – 180)	0.6	≤1.6	<0.5DC
		MP6120	R	130 (80 – 180)	0.8	≤1.6	0.5 – 0.8D
Carbon steel	180-280HB	MP6120	М	130 (80 – 180)	1.0	≤1.6	0.8 – 1DC
Alloy steel	100-20011B	MV1030	R	140 (80 – 200)	0.6	≤1.6	<0.5DC
		MV1030	R	140 (80 – 200)	0.8	≤1.6	0.5 – 0.8D
		MV1030	М	140 (80 – 200)	1.0	≤1.6	0.8 – 1DC
		MP6130	R	110 (60 – 160)	0.6	≤1.6	<0.5DC
		MP6130	R	110 (60 – 160)	0.8	≤1.6	0.5 – 0.8D
		MP6130	М	110 (60 – 160)	1	≤1.6	0.8 – 1DC
		MV1020	R	150 (100 – 200)	0.5	≤1.6	<0.5DC
		MV1020	R	150 (100 – 200)	0.6	≤1.6	0.5 – 0.8D
		MV1020	R	150 (100 – 200)	0.7	≤1.6	0.8 - 1DC
		MP6120	R	100 (50 – 150)	0.5	≤1.6	<0.5DC
		MP6120	R	100 (50 – 150)	0.6	≤1.6	0.5 – 0.8D
Carbon steel	280-350HB	MP6120	R	100 (50 – 150)	0.7	≤1.6	0.8 - 1DC
Alloy steel	200-30000	MV1030	R	90 (30 – 150)	0.5	≤1.6	<0.5DC
		MV1030	R	90 (30 – 150)	0.6	≤1.6	0.5 – 0.8D
		MV1030	R	90 (30 – 150)	0.7	≤1.6	0.8 - 1DC
		MP6130	R	80 (30 – 130)	0.5	≤1.6	<0.5DC
		MP6130	R	80 (30 – 130)	0.6	≤1.6	0.5 - 0.8D
		MP6130	R	80 (30 – 130)	0.7	≤1.6	0.8 - 1DC
		MP6120	R	100 (50 – 150)	0.5	≤1.6	<0.5DC
		MP6120	R	100 (50 – 150)	0.6	≤1.6	0.5 – 0.8D
Alloy tool steel	<350HB	MP6120	R	100 (50 – 150)	0.7	≤1.6	0.8 - 1DC
הווטץ וטטו אופפו	~3300	MP6130	R	80 (30 – 120)	0.5	≤1.6	<0.5DC
		MP6130	R	80 (30 – 120)	0.6	≤1.6	0.5 – 0.8D
		MP6130	R	80 (30 – 120)	0.7	≤1.6	0.8 - 1DC
		MP6120	R	100 (70 – 130)	0.5	≤1.6	<0.5DC
		MP6120	R	100 (70 – 130)	0.6	≤1.6	0.5 – 0.8D
Dro border	ae /eupa	MP6120	R	100 (70 – 130)	0.7	≤1.6	0.8 - 1DC
Pre-hardened steel	35-45HRC	MP6130	R	80 (50 – 110)	0.5	≤1.6	<0.5DC
		MP6130	R	80 (50 – 110)	0.6	≤1.6	0.5 - 0.8D
		MP6130	R	80 (50 – 110)	0.7	≤1.6	0.8 - 1DC

28

AHX475S

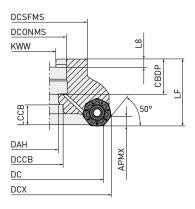
RECOMMENDED CUTTING CONDITIONS

DRY CUTTING

	Material	Properties	Grade		Vc	fz	ар	ae
			MC5020	R	150 (100 – 200)	0.6	≤1.6	<0.5DC
			MC5020	R	150 (100 – 200)	0.8	≤1.6	0.5 - 0.8DC
	0	050115	MC5020	М	150 (100 – 200)	1.0	≤1.6	0.8 - 1DC
	Grey cast iron	<350MPa	VP15TF	R	120 (80 – 160)	0.6	≤1.6	<0.5DC
			VP15TF	R	120 (80 – 160)	0.8	≤1.6	0.5 - 0.8DC
			VP15TF	М	120 (80 – 160)	1.0	≤1.6	0.8 - 1DC
			MV1020	R	200 (150 – 250)	0.6	≤1.6	<0.5DC
			MV1020	R	200 (150 – 250)	0.8	≤1.6	0.5 - 0.8DC
			MV1020	М	200 (150 – 250)	1.0	≤1.6	0.8 - 1DC
			MC5020	R	150 (100 – 200)	0.6	≤1.6	<0.5DC
			MC5020	R	150 (100 – 200)	0.8	≤1.6	0.5 - 0.8DC
	D 17	(50MB	MC5020	М	150 (100 – 200)	1.0	≤1.6	0.8 – 1DC
	Ductile cast iron	<450MPa	MV1030	R	140 (80 – 200)	0.6	≤1.6	<0.5DC
			MV1030	R	140 (80 – 200)	0.8	≤1.6	0.5 - 0.8DC
L.			MV1030	М	140 (80 – 200)	1.0	≤1.6	0.8 - 1DC
K			VP15TF	R	120 (80 – 160)	0.6	≤1.6	<0.5DC
			VP15TF	R	120 (80 – 160)	0.8	≤1.6	0.5 - 0.8DC
			VP15TF	М	120 (80 – 160)	1	≤1.6	0.8 – 1DC
			MV1020	R	180 (130 – 230)	0.5	≤1.6	<0.5DC
			MV1020	R	180 (130 – 230)	0.6	≤1.6	0.5 - 0.8DC
			MV1020	R	180 (130 – 230)	0.7	≤1.6	0.8 – 1DC
			MC5020	R	150 (100 – 200)	0.5	≤1.6	<0.5DC
			MC5020	R	150 (100 – 200)	0.6	≤1.6	0.5 - 0.8DC
	Ductile cast iron	<800MPa	MC5020	R	150 (100 – 200)	0.7	≤1.6	0.8 – 1DC
	Ductile cast from	<800MPa	MV1030	R	140 (80 – 200)	0.5	≤1.6	<0.5DC
			MV1030	R	140 (80 – 200)	0.6	≤1.6	0.5 - 0.8DC
			MV1030	R	140 (80 – 200)	0.7	≤1.6	0.8 - 1DC
			VP15TF	R	120 (80 – 160)	0.5	≤1.6	<0.5DC
			VP15TF	R	120 (80 – 160)	0.6	≤1.6	0.5 - 0.8DC
			VP15TF	R	120 (80 – 160)	0.7	≤1.6	0.8 – 1DC
			VP15TF	R	70 (50 – 90)	0.4	≤1.6	<0.5DC
Н	Hardened steel	40-55HRC	VP15TF	R	70 (50 – 90)	0.5	≤1.6	0.5 - 0.8DC
			VP15TF	R	70 (50 – 90)	0.6	≤1.6	0.8 - 1DC

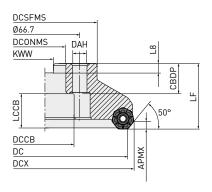
29

AHX640S



FACE MILL

1 Ø 63 Ø 80



2 DCSFMS
Ø 100
Ø 125

DCONMS
Ø 125

DCCB
DC
DCX

3 Ø 160

DCSFMS

Ø 200

Ø 101.6

DCONMS

KWW

DAH

S9

DCCB

DC

DCX

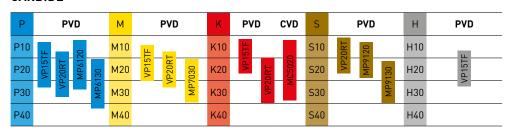
Right hand tool holder only.

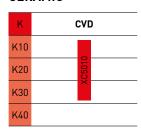
Tool holder type	Set bolt		Geometry
AHX640S-063ACAR	HSC10030H		1
AHX640S-080ACCAR	HSC12035H	1	
AHX640S-100BOOAR	MBA16033H		
AHX640S-125B\\AR	MBA20040H	2	2
AHX640S-160COONR	<u> </u>	_	
AHX640S-200COONR	_	_	-

AHX640S - FACE MILL

ARBOR TYPE

Order number	Stock	АРМХ	DC	DCONMS	LF	WT	ZEFF		Туре
AHX640S-063A04AR	•	6	63	22	50	0.7	4	0	1
AHX640S-063A05AR	•	6	63	22	50	0.6	5	0	1
AHX640S-080A04AR	•	6	80	27	50	1.1	4	0	1
AHX640S-080A06AR	•	6	80	27	50	1.0	6	0	1
AHX640S-100B05AR	•	6	100	32	50	1.7	5	0	2
AHX640S-100B07AR	•	6	100	32	50	1.6	7	0	2
AHX640S-125B06AR	•	6	125	40	63	3.1	6	0	2
AHX640S-125B08AR	•	6	125	40	63	3.0	8	0	2
AHX640S-160C07NR	•	6	160	40	63	5.4	7	_	3
AHX640S-160C10NR	•	6	160	40	63	5.2	10	_	3
AHX640S-200C08NR	•	6	200	60	63	7.8	8	_	4
AHX640S-200C12NR	•	6	200	60	63	7.5	12	_	4


1. ○ = With through coolant holes


MOUNTING DIMENSIONS

Order number	CBDP	DAH	DCCB	DCONMS	DCSFMS	DCX	KWW	L8	Туре
AHX640S-063A04AR	20	11	_	22	50	75.55	10.4	6.3	1
AHX640S-063A05AR	20	11	_	22	50	75.55	10.4	6.3	1
AHX640S-080A04AR	23	13	_	27	56	92.55	12.4	7	1
AHX640S-080A06AR	23	13	_	27	56	92.55	12.4	7	1
AHX640S-100B05AR	32	_	45	32	78	112.55	14.4	8	2
AHX640S-100B07AR	32	_	45	32	78	112.55	14.4	8	2
AHX640S-125B06AR	42	_	56	40	89	137.55	16.4	9	2
AHX640S-125B08AR	42	_	56	40	89	137.55	16.4	9	2
AHX640S-160C07NR	29	_	56	40	120	172.55	16.4	9	3
AHX640S-160C10NR	29	_	56	40	120	172.55	16.4	9	3
AHX640S-200C08NR	32	_	140	60	175	212.55	25.7	14.22	4
AHX640S-200C12NR	32	_	140	60	175	212.55	25.7	14.22	4

GRADE SELECTION CARBIDE

GRADE SELECTION CERAMIC

AHX640S - INSERTS

o	Steel					C	*				•	C							
	Stainless steel										•		Cutt	ing co	nditio	ns:	0	. 4 11	
	Cast iron			•	C						*	•	U : 5	тарте с	utting	U : (General cuttin	g ♦ : Unstable c	utting
	Heat-resistant alloy, Titani	um a	llov		Ť				C	#	•	ē		ing:					
	Hardened steel									<u> </u>	•	Ť	E: R	ound					
	Order number	Class	Honing	XC5010	MC5020	MP6120	MP6130	MP7030	MP9120	MP9130	VP15TF	VP20RT	IC	S	BS	RE	АРМХ	Geo	metry
ı	L									-									
	NNMU200712ZER-L	M	E						•	•			20	8.0	1.0	1.2	6		BS RE
	M/MP																		
-	NNMU200708ZEN-MP	М	Е								•		20	8.0	1.0	8.0	6		
-	NNMU200708ZEN-M	М	Е			•	•						20	8.0	1.0	0.8	6		BS RE IC S
	WP (Wiper)																		
	WNEU2007ZEN7C-WP	M	Е								•		20	7.2	7.1	0.8	6		BS RE S
	MM NNMU200712ZER-MM	М	E					•					20	8.0	1.0	1.2	6		BS RE S
	MK																		
	NNMU200608ZEN-MK	M	E	•	•						•	*	20	6.55	1.0	0.8	6		BS RE
	нк																		
	NNMU200608ZEN-HK	M	Е		•						•	*	20	6.55	1.0	0.8	6		BS RE
J	WK* (Wiper)																		
	WNEU2006ZEN7C-WK	M	Е		•								20	6.55	7.4	0.8	6		BS RE S
J	FT																		
	NNMQ200708ZEN-FT	М	Е	•									20	6.55	1.0	0.8	6	6	BS RE S

^{*} The MK/HK/WK breaker insert is compatible with AHX640S.

^{1.} Possible wiper combinations: MK/HK with WK (wiper) & MP/L/M with WP (wiper).

^{2.} Note that the height differs when MK/HK chipbreaker inserts are used.

AHX640S

RECOMMENDED CUTTING CONDITIONS

DRY CUTTING

	Material	Properties	Conditions	Grade	~	Vc	fz	ар	ae
			C	MP6120	М	250 (200–300)	0.30 (0.20-0.40)	≤ 5	<0.8DC
	Mild steel	<180HB	•	VP15TF	MP	250 (200–300)	0.30 (0.20-0.40)	≤5	<0.8DC
			*	MP6130	М	220 (170–270)	0.40 (0.30-0.50)	≤5	<0.8DC
			c	MP6120	М	220 (170–270)	0.30 (0.20-0.40)	≤5	<0.8DC
		180-280HB	C	VP15TF	MP	220 (170–270)	0.30 (0.20-0.40)	≤5	<0.8DC
	Carbon steel,		*	MP6130	М	190 (140–240)	0.40 (0.30-0.50)	≤5	<0.8DC
	Alloy steel		C	MP6120	М	140 (100–180)	0.30 (0.20-0.40)	≤5	<0.8DC
Р		280-350HB	•	VP15TF	MP	140 (100–180)	0.30 (0.20-0.40)	≤5	≤0.8DC
			*	MP6130	М	110 (70–150)	0.40 (0.30-0.50)	≤5	<0.8DC
			c	MP6120	М	140 (100–180)	0.15 (0.10-0.20)	≼3	<0.8DC
	Alloy tool steel	≤350HB	•	VP15TF	MP	140 (100–180)	0.15 (0.10-0.20)	≼3	<0.8DC
			*	MP6130	М	110 (70–150)	0.25 (0.20-0.30)	≼3	<0.8DC
			•	MP6120	М	140 (100–180)	0.15 (0.10-0.20)	≼3	<0.8DC
	Pre-hardened steel	35-45HRC	•	VP15TF	MP	140 (100–180)	0.15 (0.10-0.20)	≤ 5	<0.8DC
			*	MP6130	М	110 (70–150)	0.25 (0.20-0.30)	≼3	<0.8DC
		≤200HB	•	MP7030	ММ	200 (150–250)	0.20 (0.10-0.30)	≤5	<0.8DC
	Austenitic stainless steel	≥200HB	©	MP7030	ММ	150 (100–200)	0.20 (0.10-0.30)	≤ 5	<0.8DC
	Two-phase stainless steel	≤280HB	¢	MP7030	ММ	140 (100–180)	0.15 (0.05–0.25)	≤ 5	<0.8DC
М	Ferritic and martensitic	≤200HB	C	MP7030	ММ	200 (150–250)	0.20 (0.10-0.30)	≤ 5	<0.8DC
	stainless steel	≥200HB	c	MP7030	ММ	150 (100–200)	0.20 (0.10-0.30)	≤ 5	<0.8DC
	Precipitation hardening stainless steel	≼450HB	¢	MP7030	ММ	130 (100–160)	0.15 (0.05-0.25)	≤ 5	≤0.8DC
			¢	XC5010	MK, FT	800 (500–1000)	0.10 (0.10-0.30)	≼3	≤0.8DC
	0	050145	C	MC5020	MK, HK	220 (150–300)	0.30 (0.20-0.40)	≤ 5	<0.8DC
	Grey cast iron	<350MPa	¢	VP15TF	MP	180 (130–230)	0.30 (0.20-0.40)	≤5	<0.8DC
			*	VP15TF, VP20RT	MK, HK	180 (130–230)	0.30 (0.20-0.40)	≤ 5	<0.8DC
			¢	XC5010	MK, FT	800 (500–1000)	0.10 (0.10-0.30)	≼3	<0.8DC
.,		(50MB	¢	MC5020	MK, HK	200 (150–250)	0.20 (0.10-0.30)	≤ 5	<0.8DC
K		<450MPa	•	VP15TF	MP	170 (120–220)	0.20 (0.10-0.30)	≤ 5	<0.8DC
	5		*	VP15TF, VP20RT	MK, HK	170 (120–220)	0.20 (0.10-0.30)	≤ 5	≤0.8DC
	Ductile cast iron	-	•	XC5010	MK, FT	800 (500–1000)	0.10 (0.10-0.30)	≼3	<0.8DC
			•	MC5020	MK, HK	170 (150–200)	0.20 (0.10-0.30)	≤ 5	<0.8DC
		<800MPa	•	VP15TF	MP	140 (100–180)	0.20 (0.10-0.30)	≤ 5	<0.8DC
			*	VP15TF, VP20RT	MK, HK	140 (100–180)	0.20 (0.10-0.30)	≤ 5	<0.8DC
Н	Hardened steel	40-55HRC	c	VP15TF	MP	80 (60–100)	0.15 (0.10-0.20)	≼3	<0.8DC
									1/1

- 1. Wet cutting is recommended for good surface finishing of stainless steel. (Tool life is short compared to dry cutting.)
- 2. Wet cutting with internal coolant is recommended for titanium and heat resistant alloys.
- 3. If the clamping rigidity of the work material is low and the tool overhang is long, adjust the cutting speed and feed in the table above.

AHX640S

RECOMMENDED CUTTING CONDITIONS

WET CUTTING

	Material	Properties	Grade	~	Vc	fz	ар	ae
	Austenitic stainless steel	<200HB	MP7030	ММ	125 (100–150)	0.15 (0.10-0.20)	≤5	≤0.8DC
	Austernite staniess steet	≥200HB	MP7030	ММ	100 (75–125)	0.15 (0.10-0.20)	≤5	<0.8DC
N	Two-phase stainless steel	≤280HB	MP7030	ММ	80 (60–100)	0.10 (0.05-0.15)	≤5	<0.8DC
IV	Ferritic and martensitic stainless steel	<200HB	MP7030	ММ	125 (100–150)	0.15 (0.10-0.20)	≤5	≤0.8DC
	Ferritic and martensitic stanitess steet	≥200HB	MP7030	ММ	100 (75–125)	0.15 (0.10-0.20)	≤5	≤0.8DC
	Precipitation hardening stainless steel	<450HB	MP7030	ММ	70 (50- 90)	0.10 (0.05-0.15)	≤5	≤0.8DC
			MP7030	ММ	40 (20- 50)	0.15 (0.10-0.20)	≼3	≤0.6DC
	Titanium alloy	_	MP9120	L	60 (50- 70)	0.10 (0.05-0.15)	≼3	≤0.6DC
			MP9130	L	40 (20- 50)	0.15 (0.10-0.20)	≼3	≤0.6DC
3			MP7030	ММ	40 (20- 50)	0.15 (0.10-0.20)	≼3	≤0.6DC
	Heat resistant alloy	_	MP9120	L	60 (50- 70)	0.10 (0.05-0.15)	≼3	≤0.6DC
	·		MP9130	L	40 (20- 50)	0.15 (0.10-0.20)	≼3	≤0.6DC
								1/1

- 1. Wet cutting is recommended for good surface finishing of stainless steel. (Tool life is short compared to dry cutting.)
- 2. Wet cutting with internal coolant is recommended for titanium and heat resistant alloys.
- 3. When clamp rigidity is low and tool overhang is long, it is recommended to reduce the cutting speed and the feed rate by 30 %.

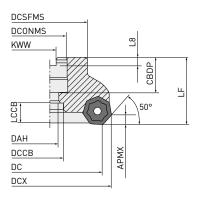
CUTTING CONDITIONS FOR WIPER INSERT

	Material	Properties	Main insert	~	Wiper insert	~	Vc	fz	ар	ae
	Mild steel	≤180HB	VP15TF	MP	VP15TF	WP	250 (200–300)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
	Mild Steet	₹100⊓D	MP6120	М	MP6120	М	250 (200–300)	0.30 (0.20-0.40)	<0.5	<0.8DC
P		180-280HB	VP15TF	MP	VP15TF	WP	220 (170–270)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
	Carbon steel,	180-28000	MP6120	М	MP6120	М	220 (170–270)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
	Alloy steel	280-350HB	VP15TF	MP	VP15TF	WP	140 (100–180)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
		280-33000	MP6120	М	MP6120	М	140 (100–180)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
	Cray east iron	≤350MPa	MC5020	MK, HK	MC5020	WK	320 (250–400)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
	Grey cast iron	€350MPa	VP15TF	MP	VP15TF	WP	220 (150–300)	0.30 (0.20-0.40)	≤0.5	≤0.8DC
		≤450MPa	MC5020	MK, HK	MC5020	WK	250 (200–300)	0.20 (0.10-0.30)	≤0.5	≤0.8DC
K	Ductile cast iron	€450MPa	VP15TF	MP	VP15TF	WP	200 (150–250)	0.20 (0.10-0.30)	≤0.5	≤0.8DC
	Ductile cast Iron	*000MD-	MC5020	MK, HK	MC5020	WK	220 (200–250)	0.20 (0.10-0.30)	≤0.5	≤0.8DC
		<800MPa	VP15TF	MP	VP15TF	WP	170 (150–200)	0.20 (0.10-0.30)	≤0.5	≤0.8DC
S	Heat resistant alloy	_	VP15TF	MP	VP15TF	WP	40 (20- 50)	0.15 (0.10-0.20)	≤0.5	≤0.8DC
Н	Hardened steel	40-55HRC	VP15TF	MP	VP15TF	WP	80 (60–100)	0.15 (0.10-0.20)	≤0.5	≤0.8DC

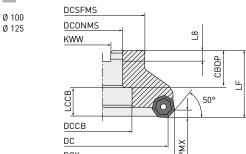
^{1.} When clamp rigidity is low and tool overhang is long, it is recommended to reduce the cutting speed and the feed rate by $30\,\%$.

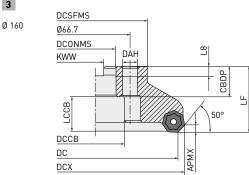
^{2.} Please use WP geometry insert in combination with MP geometry inserts, and use WK geometry insert in combination with MK or HK geometry inserts

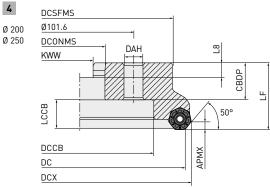
AHX640W

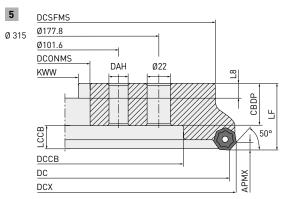


FACE MILLING HIGH FEED MACHINING OF CAST IRON




1 Ø 80


2



3

Ø 200

Right hand tool holder only.

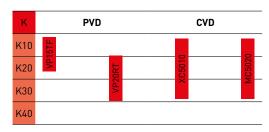
AHX640W - FACE MILLING HIGH FEED MACHINING OF CAST IRON

ARBOR TYPE

	Sto	ock			DOONING				
Order number	R	L	— APMX	DC	DCONMS	LF	WT	ZEFF	Туре
AHX640W-080A08R/L	•	•	6	80	27	50	1.5	8	1
AHX640W-080A10R/L	•	•	6	80	27	50	1.5	10	1
AHX640W-100B10R/L	•	•	6	100	32	50	2.1	10	2
AHX640W-100B14R/L	•	•	6	100	32	50	2.1	14	2
AHX640W-125B12R/L	•	•	6	125	40	63	3.1	12	2
AHX640W-125B18R/L	•	•	6	125	40	63	3.1	18	2
AHX640W-160C16R/L	•	•	6	160	40	63	5.6	16	3
AHX640W-160C22R/L	•	•	6	160	40	63	5.6	22	3
AHX640W-200C20R/L	•	•	6	200	60	63	8.0	20	4
AHX640W-200C28R/L	•	•	6	200	60	63	8.0	28	4
AHX640W-250C24R/L	•	•	6	250	60	63	12.6	24	4
AHX640W-250C36R/L	•	•	6	250	60	63	12.6	36	4
AHX640W-315C28R/L	•	•	6	315	60	80	31.5	28	5
AHX640W-315C44R/L	•	•	6	315	60	80	31.5	44	5

38 (Vc

MOUNTING DIMENSIONS


CBDP								
	DAH	DCCB	DCONMS	DCSFMS	DCX	KWW	L8	Туре
23	13	_	27	56	92.6	12.4	7	1
23	13		27	56	92.6	12.4	7	1
32	_	45	32	70	112.6	14.4	8	2
32	_	45	32	70	112.6	14.4	8	2
32	_	56	40	80	137.6	16.4	9	2
32	_	56	40	80	137.6	16.4	9	2
29	_	56	40	100	172.6	16.4	9	3
29	_	56	40	100	172.6	16.4	9	3
32	_	135	60	155	212.6	25.7	14	4
32	_	135	60	155	212.6	25.7	14	4
32	_	180	60	200	262.6	25.7	14	4
32	_	180	60	200	262.6	25.7	14	4
57	_	225	60	285	327.6	25.7	14	5
57	_	225	60	285	327.6	25.7	14	5
	23 32 32 32 32 32 29 29 29 32 32 32 32 32 57	23 13 32 — 32 — 32 — 32 — 32 — 29 — 29 — 29 — 32 — 32 — 32 — 32 — 31 — 32 — 32 — 31 — 32 — 31 — 32 —	23 13 — 32 — 45 32 — 45 32 — 56 32 — 56 29 — 56 29 — 56 32 — 135 32 — 135 32 — 180 32 — 180 57 — 225	23 13 — 27 32 — 45 32 32 — 45 32 32 — 56 40 32 — 56 40 29 — 56 40 29 — 56 40 32 — 135 60 32 — 135 60 32 — 180 60 32 — 180 60 57 — 225 60	23 13 — 27 56 32 — 45 32 70 32 — 45 32 70 32 — 56 40 80 32 — 56 40 80 29 — 56 40 100 29 — 56 40 100 32 — 135 60 155 32 — 135 60 155 32 — 180 60 200 32 — 180 60 200 57 — 225 60 285	23 13 — 27 56 92.6 32 — 45 32 70 112.6 32 — 45 32 70 112.6 32 — 56 40 80 137.6 32 — 56 40 80 137.6 29 — 56 40 100 172.6 29 — 56 40 100 172.6 29 — 56 40 100 172.6 32 — 135 60 155 212.6 32 — 135 60 155 212.6 32 — 180 60 200 262.6 32 — 180 60 200 262.6 57 — 225 60 285 327.6	23 13 — 27 56 92.6 12.4 32 — 45 32 70 112.6 14.4 32 — 45 32 70 112.6 14.4 32 — 56 40 80 137.6 16.4 32 — 56 40 80 137.6 16.4 29 — 56 40 100 172.6 16.4 29 — 56 40 100 172.6 16.4 29 — 56 40 100 172.6 16.4 32 — 135 60 155 212.6 25.7 32 — 135 60 155 212.6 25.7 32 — 180 60 200 262.6 25.7 32 — 180 60 200 262.6 25.7 57 — 225 60 285 327.6 25.7	23 13 — 27 56 92.6 12.4 7 32 — 45 32 70 112.6 14.4 8 32 — 45 32 70 112.6 14.4 8 32 — 56 40 80 137.6 16.4 9 32 — 56 40 80 137.6 16.4 9 29 — 56 40 100 172.6 16.4 9 29 — 56 40 100 172.6 16.4 9 32 — 135 60 155 212.6 25.7 14 32 — 135 60 155 212.6 25.7 14 32 — 180 60 200 262.6 25.7 14 32 — 180 60 200 262.6 25.7 14 32 — 180 60 200 262.6 25.7 14 32 — 180 60 200 262.6 25.7 14 57 — 225 60 285 327.6 25.7

AHX640W - INSERTS

Cast iron			•	¢	¢	C		ng:			ieral cuti	ting ☆ : Unstable cutting	
Order number	Class	Honing	XC5010	MC5020	VP15TF	VP20RT	IC	s	BS	RE	АРМХ	Geometry	
MK NNMU200608ZEN-MK	М	E	•	•	•	•	20	6.1	1.0	0.8	6	BS RE	S
HK NNMU200608ZEN-HK	М	E		•	•	•	20	6.1	1.0	0.8	6	BS RE	S
FT NNMQ200708ZEN-FT	M	Ε	•		•		20	6.55	1.0	0.8	6	BSI RE	S
WK WNEU2006ZEN7C-WK	E	Е		•			20	6.55	7.4	0.8	0.5	BS RE IC	S

^{1.} The inserts can be used with both right and left hand cutters.

GRADE SELECTION

AHX640W

RECOMMENDED CUTTING CONDITIONS

GENERAL CUTTING

	•	XC5010	MK, FT	800 (500–1000)	0.1 (0.1-0.3)	≼3	<0.8DC
<350MPa	C	MC5020	MK, HK	220 (150- 300)	0.3 (0.2-0.4)	≤5	<0.8DC
	C #	VP15TF/VP20RT	MK, HK	180 (130- 230)	0.3 (0.2-0.4)	≤5	<0.8DC
	C	XC5010	MK, FT	800 (500–1000)	0.1 (0.1-0.3)	≼3	<0.8DC
<450MPa	•	MC5020	MK, HK	200 (150- 250)	0.2 (0.1-0.3)	≤5	<0.8DC
	C #	VP15TF/VP20RT	MK, HK	170 (120- 220)	0.2 (0.1-0.3)	≤5	<0.8DC
	C	XC5010	MK, FT	800 (500–1000)	0.1 (0.1-0.3)	≼3	<0.8DC
<800MPa	C	MC5020	MK, HK	170 (150- 200)	0.2 (0.1-0.3)	≤5	<0.8DC
	C #	VP15TF/VP20RT	MK, HK	140 (100- 180)	0.2 (0.1-0.3)	≤ 5	<0.8DC
	<450MPa	<450MPa	VP15TF/VP20RT C XC5010 C MC5020 C VP15TF/VP20RT C XC5010 C XC5010 C MC5020 MC5020	C★ VP15TF/VP20RT MK, HK C XC5010 MK, FT C MC5020 MK, HK C★ VP15TF/VP20RT MK, HK C XC5010 MK, FT C MC5020 MK, HK	 VP15TF/VP20RT MK, HK 180 (130 - 230) XC5010 MK, FT 800 (500 - 1000) MK, HK 200 (150 - 250) VP15TF/VP20RT MK, HK 170 (120 - 220) XC5010 MK, FT 800 (500 - 1000) MK, FT 800 (500 - 1000) MK, HK 170 (150 - 200) 	C# VP15TF/VP20RT MK, HK 180 (130 - 230) 0.3 (0.2 - 0.4) C XC5010 MK, FT 800 (500 - 1000) 0.1 (0.1 - 0.3) C MC5020 MK, HK 200 (150 - 250) 0.2 (0.1 - 0.3) C# VP15TF/VP20RT MK, HK 170 (120 - 220) 0.2 (0.1 - 0.3) C XC5010 MK, FT 800 (500 - 1000) 0.1 (0.1 - 0.3) C MC5020 MK, HK 170 (150 - 200) 0.2 (0.1 - 0.3)	C# VP15TF/VP20RT MK, HK 180 (130 - 230) 0.3 (0.2 - 0.4) ≤ 5 C XC5010 MK, FT 800 (500 - 1000) 0.1 (0.1 - 0.3) ≤ 3 C# VP15TF/VP20RT MK, HK 200 (150 - 250) 0.2 (0.1 - 0.3) ≤ 5 C# VP15TF/VP20RT MK, HK 170 (120 - 220) 0.2 (0.1 - 0.3) ≤ 3 C# XC5010 MK, FT 800 (500 - 1000) 0.1 (0.1 - 0.3) ≤ 3 C# MC5020 MK, HK 170 (150 - 200) 0.2 (0.1 - 0.3) ≤ 5

- 1. With reference to the above examples, adjust the cutting conditions according to the machining set up.
- 2. Tool life when wet cutting is short compared to dry cutting.

FINISHING (USE OF WIPER INSERTS)

Material	Properties	Conditions	Grade	~	Vc	fz	ар
Gray cast iron	<350MPa	C	MC5020	MK, HK	320 (250–400)	0.2 (0.1-0.3)	<0.5
oray cast from	<300MPa	•	MC5020	MK, HK	270 (200–350)	0.2 (0.1-0.3)	0.5-3
Ductile cast iron	/FOMD-	•	MC5020	MK, HK	270 (200–350)	0.2 (0.1–0.3)	<0.5
Ductile cast from	<450MPa	•	MC5020	MK, HK	220 (200–250)	0.2 (0.1–0.3)	0.5-3
							1/1

1. Please use 2 – 3 wiper inserts when the feed is greater than 6 mm/rev.

MEMO		

EUROPEAN SALES COMPANIES

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone + 49 2159 91890 . Fax + 49 2159 918966

Email admin@mmchq.de

U.K. Office

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone + 44 1827 312312

Email sales@mitsubishicarbide.co.uk

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia

Phone + 34 96 1441711 Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

Email info@mmc-italia.it

TURKEY

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

www.mmc-carbide.com

DISTRIBUTED BY: